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Abstract. Nanoemulsions are increasingly being investigated for their fascinating capability of loading
both hydrophobic and hydrophilic molecules while their stability is still an issue, being affected by various
factors. In this study, to evaluate the dominant factors affecting the stability of nanoemulsions, artificial
neural networks (ANNs) were implemented. Nanoemulsions of almond oil in water containing oleic acid-
coated superparamagnetic iron oxide nanoparticles were prepared using a mixture of Tween 80 and Span
80 as surfactant system and ethanol as a co-surfactant. The ratio of transparency of the samples at 30 min
and 7 days after preparation was taken as an indication of the stability of samples. Four independent
variables, namely, concentration of nanoparticle, surfactant, oil, and alcohol were investigated to find their
relations with the dependent variable (i.e., transparency ratio). Using ANNs modeling, it was concluded
that the stability is affected by all variables, with all variables showing reverse effect on the stability
beyond an optimum amount.

KEY WORDS: artificial neural networks; nanoemulsion; optimization; stability; superparamagnetic iron
oxide.

INTRODUCTION

Nowadays, superparamagnetic iron oxide nanoparticles
(SPIONs) have attracted a great deal of attention to be uti-
lized in various medical applications such as drug and gene
delivery (1), hyperthermia (2), tissue engineering (1,3), and
cellular labeling and cell separation (4), with probably the
most interesting use as contrast agents in magnetic resonance
imaging (MRI) (5,6).

Following in vivo administration of SPIONs, increasing
the intracellular iron oxide levels leads to apoptosis and DNA
fragmentation (7,8) or can result in oxidative stress and cell
damage due to formation of reactive oxygen species leading to
cell death (9,10). Therefore, coating these particles to reduce
the possible toxicities may be of high importance in medical
applications, as observed in Feridex IV® (Berlex Laborato-
ries, Wayne, New Jersey), a dextran-coated SPION utilized as
a MRI contrast agent to image hepatic tissue (11). Coating

systems also commonly affect the stability of colloidal disper-
sions due to electrostatic and/or steric repulsion forces (12).
They can also reduce biologically non-specific adsorptions,
like adsorbing of plasma protein on the surface of nanopar-
ticles (NPs), which may lead to clearance by reticule endothe-
lial system (2). In order to minimize such effects, many coating
polymers (e.g., dextran, polyethylene glycol (PEG), and poly-
vinyl alcohol (PVA)) have been successfully employed to
modify or functionalize NP surface (13).

In addition to the polymers, liposome (magnetosome)
and micelles with amphiphilic block copolymers have also
been suggested to coat SPIONs in the literature (14,15). For
instance, Yang et al. reported synthesized micelles of biode-
gradable copolymers (PEG-PVA) carrying SPIONs and doxo-
rubicin with high efficacy of the anticancer drug in addition to
the potential for use in MRI (16). In another study, Nasongkla
et al. have reported micelles of copolymers of MAL-PLG-
PLA containing SPIONs and doxorubicin as having targeting
agents on the surface of micelles (14). The only work on
SPIONs-loaded nanoemulsions is by Jarzyna et al., reporting
selective accumulation of SPIONs in tumor with better quality
in MRI images (5). However, no work so far has detailed the
physicochemical properties of such systems (including the
stability of the SPIONs-loaded nanoemulsion) as the first step
to develop a nanoemulsion-based preparation containing
SPIONs.

Reviewing the literature, several studies report the stability
of nanoemulsions. Parameters such as zeta potential, molecular
structure of co-surfactant (17), ratio of surfactant to co-surfac-
tant (18), molecular structure of oil (19), pH (20), and applied
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energy (21) have been reported to influence the stability of
nanoemulsions. However, such works are commonly based on
one-factor-at-a-time designs which are associated with

disadvantages such as inaccurate estimates of the effects. They
also study only a small area of the factor space (22). Overall,
stability studies to investigate the interactions of the parameters

Table II. The Training Parameters Used with INForm v4.02

Network structure No. of hidden layers 1
No. of nodes in hidden layer 3

Back propagation type Quick Prop
Back propagation parameters Momentum factor 0.8

Learning rate 0.7
Targets Maximum iterations 1000

MS error 0.0001
Random seed 10000

Smart stop Minimum iterations 20
Test error weighting 0.1
Iteration overshoot 200
Auto weight 1
Smart stop enabled On

Transfer function Output Asymmetric sigmoid
Hidden layer Tanh

Table I. The Training and Test Data Set Used in ANN Modeling (n01)

Nanoparticle
amount, mg/20 cm3

Oil concentration,
%v/v

Surfactant concentration,
%v/v

Alcohol concentration,
%v/v

Result
(TR)

Predicted result
(TR)

Result
error

1.0 7 18 3.0 0.386 0.459 0.070
1.8 6 18 3.4 0.462 0.577 0.110
0.6 4 20 3.6 0.498 0.538 0.040
0.9 7 16 2.0 0.524 0.543 0.010
1.7 4 18 2.0 0.565 0.752 0.180
0.8 6 20 2.6 0.592 0.620 0.020
0.7 6 15 2.0 0.605 0.558 −0.400
1.2 5 18 3.2 0.614 0.703 0.080
1.2 5 19 3.6 0.615 0.518 −0.090
1.3 4 15 2.7 0.632 0.753 0.120
0.5 6 17 4.0 0.648 0.702 0.050
0.4 5 15 2.0 0.658 0.671 0.010
1 5 18 2.4 0.658 0.738 0.080
0.5 3 17 3.8 0.668 0.754 0.080
1.0 3 16 2.9 0.670 0.753 0.080
0.9 6 17 4.0 0.672 0.583 −0.080
0.3 3 17 3.4 0.675 0.768 0.090
2.0 5 15 2.0 0.686 0.753 0.060
1.5 4 16 2.0 0.687 0.753 0.060
0.8 6 19 3.0 0.692 0.561 −0.130
0.6 5 16 2.5 0.694 0.743 0.040
0.8 5 20 2.2 0.715 0.708 −0.006
0.9 6 17 2.7 0.720 0.699 −0.020
1.6 6 16 2.2 0.732 0.750 0.010
1.8 3 19 4.0 0.824 0.727 −0.090
2.0 3 15 2.2 0.834 0.753 −0.080
2.0 7 15 3.0 0.834 0.748 −0.080
1.7 7 16 3.0 0.865 0.723 −0.140
1.6 4 16 2.5 0.900 0.753 −0.140
0.4 4 20 2.7 0.935 0.929 −0.005
1.3 4 19 2.0 0.959 0.747 −0.200
0.0 5 15 2.1 0.983 0.948 −0.030
0.8 4 16 2.3 0.986 0.752 −0.230
0.0 5 15 4.0 0.993 0.932 −0.060
1.9 6 18 4.0 0.463 0.496 0.030a

2.0 3 19 4.0 0.721 0.730 0.009a

1.5 3 18 2.0 0.906 0.753 −0.15a

TR transparency ratio
aThe last three columns are for test date
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and avoid the local optima are rare and limited to a work by our
group using artificial neural networks (ANNs) (23) and a study by
Yuan et al. employing response surfacemethodology (24).Having
mentioned that in nanoemulsion preparations, due to the com-
plexity of formulation factors and preparation processes involved
(25), evaluation of the effect of independent variables and their
simultaneous variation on nanoemulsion properties is not easily
obtainable by approaches such as one-factor-at-a-time.

In this study, we employed ANNs as an established
method to examine complex and multivariable processes,
which have been introduced to deal with non-linear phe-
nomena (26,27). In this study, four variables including
concentration of NP, oil, surfactant, and alcohol which
may affect the stability of SPIONs-loaded nanoemulsion
are chosen to be modeled by ANNs and analyze their
effects on the stability of samples.

Table III. The Unseen Data Sets Utilized in ANN Modeling (n01)

Nanoparticle amount,
mg/20 cm3

Oil concentration,
%v/v

Surfactant concentration,
%v/v

Alcohol concentration,
%v/v

Result
(TR)

Predicted
result (TR)

Result
error

1.5 7.0 19 2.90 0.446 0.440 −0.0050
0.9 6.5 20 3.75 0.458 0.538 0.0800
0.6 7.0 19 3.10 0.602 0.723 0.1200
2.0 4.0 19 3.50 0.705 0.704 −0.0006
1.4 4.0 17 3.10 0.73 0.752 0.0200
1.3 5.0 18 2.80 0.737 0.729 −0.0070
1.4 3 16 4 0.798 0.753 −0.040
0.7 6 15 3.4 0.862 0.741 −0.1200
1.1 3 17 2.4 0.893 0.753 −0.1300

TR transparency ratio
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Fig. 1. 3D plot of TR predicted by the ANN model at low, mid range, and high values of concentration of alcohol and surfactant
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MATERIALS AND METHODS

Materials

Sweet almond oil was from Sigma-Aldrich (Germany).
Tween 80 (polysorbate 80) and alcohol were purchased from
Panreac (Spain), and Span 80 was from Merck Chemicals
(Germany). The superparamagnetic iron oxide nanoparticles,
coated with oleic acid, were synthesized as described previ-
ously (28).

Preparation of Samples and Measuring Transparency Ratio

Nanoemulsion samples (20 ml) containing Span 80 and
Tween 80 as surfactant, ethanol as co-surfactant, and almond
oil as inner phase in deionized water were prepared using
UP50H probe sonicator (Hielscher, Germany) by 80% ampli-
tude for 20 min. SPIONs were loaded to the formulation
during preparation of the nanoemulsion (18). The transparen-
cy of samples (i.e., percentage of transmitted light) using
photospectrometer (Novaspec II Pharmacia Biotech,

England) was recorded 30 min and 7 days after preparation.
The transparency ratio (TR) (i.e., transmitted light after 7 days

transmitted light after 30 mins ), as
an indication of increasing size (29), which may be considered
for stability studies (18), was used to investigate the effect of
variables on the formulation stability.

Characterization of Nanoemulsion

The appropriate formulation of nanoemulsion, showing the
highest stability, was chosen to be characterized in terms of their
size, zeta potential, and polydispersity index (PDI) using zeta
sizer (Malvern, UK) equipped with the Malvern PCS software
(version 1.27).

Data Set

As a commercial ANN software, INForm v4.02 (Intelli-
gensys, UK) was implemented in this study to model the
interactions between input variables and their effects on the
output. Four variables, namely the concentration of NP, oil,
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Fig. 2. 3D plot of TR predicted by the ANN model at low, mid range, and high values of concentration of oil and surfactant
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surfactant, and alcohol were chosen as inputs of the model,
and the TR of samples was considered as the output.

Forty-eight nanoemulsion samples with different values for
the four input variables were prepared, and the TR was calcu-
lated. These data were then randomly divided into three groups,
training, test, and unseen (validation) data. The training set (see
Table I) is used to train the network and acquire the relations
between inputs and output using training parameters listed in
Table II. The test data (see Table I) are employed to prevent
overtraining of data. If the overtraining occurs, the correlation
coefficient (R2) (see Eq. 1) obtained for the test data starts to
decrease and the training process stops. After training, unseen
(validation) data (see Table III) are used to assess the ability of
the trained network to predict unseen data. The quality of
trained model and its ability to predict the data were evaluated
(R2) for training, test, and validation data from Eq. 1.

Where ỳ and y represent the value predicted by the model
and the mean of dependent variables, respectively. An accept-
able ANN model needs to have satisfactory R2 for training
and unseen data.

RESULTS

Herein, the decrease in transparency of samples over a
certain period was implemented to the model for evaluating
the effects of the input variables on the stability of the pre-
pared nanoemulsion.

In our study, to understand the relations between inputs/
output variables, a semi-quantitative approach was employed
instead of classical sensitivity analysis methodology. In this meth-
od, the effects of changing two input variables on the output are
studied through visualizing their effects by response surfaces
produced by the software, while the remaining two input varia-
bles are fixed at three specific values (i.e., low, mid, and high
ranges) (30). Following this method, 54 graphs were produced
and briefed in Figs. 1, 2, 3, 4, 5, and 6, each representing variation
of two inputs and fixing the other two in a 3D graph.
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Fig. 3. 3D plot of TR predicted by the ANN model at low, mid range, and high values of concentration of alcohol and NP
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In this work, to study the effects of concentration of NP
and oil on TR, we first fixed the values for surfactant and
alcohol concentration at their low, mid, and high ranges
(i.e., 15.8%, 17.4%, and 19.1%v/v for surfactant and
2.3%, 3.0%, and 3.6%v/v for alcohol). The generated
graphs are presented in Fig. 1. Graphs show that, with
increasing in the oil concentration, the TR decreases. At
low surfactant concentration (15.8%v/v) in graphs c, f,
and i in Fig. 1, adding oil has less effect on TR in
comparison with other graphs. In addition, increasing the
amount of NP in general makes the TR ratio smaller.
Considering the graphs c, f, and i in Fig. 1, this decrease
in the TR ratio is less remarkable when surfactant con-
centration is low.

In order to study the effects of alcohol and NP con-
centration on TR, graphs in Fig. 2 were obtained with
fixed amount of surfactant and oil at low, mid, and high
ranges (i.e., 15.8%, 17.4%, and 19.1%v/v for surfactant
and 3.6%, 4.9%, and 6.3%v/v for oil). Similar to the
findings mentioned above, adding NP shows a consider-
able decrease in TR, ending in a plateau beyond which
further increase in NP has no considerable effect. Addi-
tionally, the increase in the alcohol concentration makes

the TR smaller with more pronounced effects at high or
medium values of oil and/or surfactant concentration. Sim-
ilarly, the effect of NP concentration on the output is
clearer when oil/surfactant values are in high/medium
range. The highest TR is observed at minimum level of
alcohol (i.e., 2%) with no NP (see asterisk in the graphs).
The most stable state in which changes in alcohol and NP
have the least effect on TR ratio is seen in graph i of
Fig. 2 (i.e., low surfactant and oil).

To evaluate the effects of surfactant and oil concen-
tration on TR, the concentration of NP and alcohol were
set at fixed values of low, mid, and high (i.e., 0.3, 1.0, and
1.6 mg/20 cm3 for NP and 2.3%, 3.0%, and 3.6%v/v for
alcohol). Considering the details in Fig. 3, when NP
concentration is medium or high, TR values close to 1 is
not reachable. In this region, both oil and surfactant need
to be small to obtain maximum TR value. When NP
concentration is small, a temporary increase in the TR is
observed, where TR becomes close to 1 in a line, starting
from low values of surfactant and high value of oil,
moving through mid values of both variables and ending
in high value of oil and low value of surfactant (see
asterisk in Fig. 3).
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Fig. 4. 3D plot of TR predicted by the ANN model at low, mid range, and high values of concentration of NP and surfactant
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From Fig. 4, where the values for surfactant and NP
are fixed at low, mid, and high ranges (i.e., 15.8%, 17.4%,
and 19.1%v/v for surfactant and 0.3, 1.0, and 1.6 mg/
20 cm3 for NP), the effects of oi l and alcohol
concentration on TR is studied. Details show that when
NP concentration is medium or high, adding oil causes a
decrease in TR while a different pattern is observed in
graphs g, h, and i in Fig. 4 where, at low concentration of
NP, adding oil at first increases the TR followed by a
decrease in TR. Adding alcohol also shows to have
decreasing effect on the TR. This decrease becomes less
important in graph c (Fig. 4), where surfactant is low and
NP is high.

Considering Figs. 5 and 6, which illustrate the effects
of NP and surfactant concentration as well as surfactant
and alcohol concentration on the TR ratio, respectively,
the following results may be confirmed:

– Elevating the NP concentration shows considerable de-
crease in the TR ratio, ending in a plateau. Adding NP
at low value of oil shows the least effect on TR ratio.

– Increasing concentration of surfactant after a threshold
leads to considerable decrease in the ratio, especially when
oil concentration is increased simultaneously.

– Adding alcohol leads to decrease in the TR; this increase is
more obvious when surfactant concentration is elevated.

Sample Characterization Results

Analyzing the response surfaces produced by the model,
the optimum sample with probably highest stability was sug-
gested to contain 15%v/v surfactant, 5%v/v oil, 2.5%v/v co-
surfactant, and 1.5 mg/15 cm3 SPION. The mean droplet size
and zeta potential of the optimum sample revealed to be 38.6
and 0.3 nm, respectively, with PDI 0.154, indicating a
monodispersed preparation. In an attempt to study the long-
term physical stability of the sample, a preliminary study was
performed at room temperature (22°C±2°C). No evidence of
phase separation was observed for minimum 1.5 years.

DISCUSSION

To estimate the stability of nanoemulsions, several meth-
ods have been proposed in the literature including heating–
cooling and freeze–thaw cycles (31), centrifugation (32), Tur-
biscan analysis (33), and microscopic observation of phase
separation (34). In this work, we used the decrease in the
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Fig. 5. 3D plot of TR predicted by the ANN model at low, mid range, and high values of concentration of alcohol and oil
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transparency of nanoemulsion as an indication of increasing
size (29) which can be considered to estimate the stability of
nanoemulsion (18).

The model in our study showed that an optimum
concentration of surfactant leads to the most stable state
and exceeding beyond this concentration would not im-
prove the stability anymore. This is in agreement with the
study of Barad et al. (35) which shows that increasing the
surfactant more than an optimum amount will not im-
prove the stability. Additionally, further increases of the
surfactant concentration in our work resulted in instabil-
ity of the preparation. This could be due to several
reasons:

– Brownian motion increases as a result of smaller size arising
from increase in surfactant concentration. The increase in
Brownian motions is then followed by increase in Ostwald
ripening.

– The number of micelles increases, which results in further
collisions between micelles. This ends up in increasing the
micelles size.

– At higher concentrations of surfactant, the surfactant aggre-
gations with lamellar liquid crystalline structure would occur
instead of micelles, making the preparation more turbid (36).

In our study, adding alcohol more than a minimum
amount (about 2.2%v/v ) shows a decrease in TR. This finding
agrees with studies indicating the importance of co-surfactant
concentration and proper ratio of co-surfactant to surfactant
(37). Alcohol as a co-surfactant seems to position in the inter-
facial film with its –OH group lying among hydrophilic parts of
surfactant and neighboring water molecules, while its hydro-
phobic chain stretches towards hydrophobic chains of surfac-
tant. Nevertheless, excess amount of alcohol molecules
replaces the surfactant molecules, thus, making the nanoemul-
sion droplets less stable. Furthermore, hydrogen binding
between OH group of alcohol and polar chains of surfac-
tant can occur, which lowers the fluidity of the interfacial
film, making the preparation less stable (38). Additionally,
alcohol molecules may enter the inner phase, which causes
the expansion of the interfacial film, leading to size in-
crease and instability (39).

NP concentration 

High (1.6 mg/15cc) Mid-range (1.0 mg/15cc) Low (0.3 mg/15cc)
H

ig
h 

(6
.3

 %
v/

v)
 

a b c

M
id

-r
an

ge
 (

4.
9%

v/
v)

d e f

O
il 

co
nc

en
tr

at
io

n

L
ow

 (
3.

6%
v/

v)
 

g h i
Fig. 6. 3D plot of TR predicted by the ANNs model at low, mid range, and high values of concentration of oil and NP
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Our findings also showed that going from low to high
values of oil decreases the TR, most probably as a result of
size increasing of the hydrophobic core and the whole particle
(40,41). It can be argued that loading more oil molecules into
the nanoemulsion particles makes them more polydispersed
which pushes the system towards Oswald ripening (42). Sim-
ilarly, adding NP shows a decrease on the TR which can be
due to the size increasing. Subsequently, by increasing the core
size, the interfacial film expands and causes elevating in TR
ratio. Moreover, the obtained model indicates that in high
amount of NP and low concentration of oil, the nanoemulsion
maintains its TR in wide variation of other variables. This
might be from proper interactions of oleic acid molecules—
which are coating NP—with almond oil (of which 62% com-
prises of oleic acid). Such interactions may lead to more
packed structure.

CONCLUSION

In a system with several components, finding relations
between variables, which affect the system’s property, is a
complicated task to do. In this study, using ANNs, a model
has been developed to provide an appropriate insight into
factors affecting the decrease in the transparency of nano-
emulsion as an indication of stability. Using response surfaces
generated from the ANNs model, contribution of factors af-
fecting the stability of nanoemulsion is observed. The model
indicated that all four input variables, namely, concentration
of oil, surfactant, co-surfactant, and loaded nanoparticle have
reverse relation with the stability of preparation. The most
stable system is achieved at low surfactant concentration
(∼15.8%v/v), low range of oil (∼3.6%v/v), low amount of
NP (∼0.3 mg/15 cm3), and low range of alcohol (∼2.3%v/v).
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